Bibliography and Resources
ACS Med Chem Letters
1. Gore, A.; et al. Somatic coding mutations in human induced pluripotent stem cells. Nature 2011, 471, 63−67
http://www.nature.com/nature/journal/v471/n7336/abs/nature09805.html
2. Maguire, G. Systems biology approach to developing “systems therapeutics”. ACS Med. Chem. Lett. 2014, 5, 453−455
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4027758/
3. Deschene, E. R.; et al. β-catenin activation regulates tissue growth non-cell autonomously in the hair stem cell niche. Science 2014, 343, 1353−1356
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4027758/
4. Hetie, P.; deCuevas, M.; Matunis, E. Conversion of quiescent niche cells to somatic stem cells causes ectopic niche formation in the Drosophila testis. Cell Reports 2014, 7, 715−721 Buganim, Y.; et al. Direct reprogramming of fibroblasts into embryonic Sertoli-like cells by defined factors. Cell Stem Cell 2012, 11, 373−386
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3438668/
5. Su, G.; et al. Direct conversion of fibroblasts into neural progenitor-like cells by forced growth into 3D spheres on low attachment surfaces. Biomaterials 2013, 34 (34), 5897−5906
6. Tata, P. R.; et al. Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature 2013, 503, 218−223
http://www.nature.com/nature/journal/v503/n7475/full/nature12777.html
7. Kusaba, Y.; et al. Differentiated kidney epithelial cells repair injured proximal tubule. Proc. Natl. Acad. Sci. U.S.A. 2014, 111 (4), 1527−32 Kalluri, R.; Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 2009, 119, 1420−1428
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2689101/
8. Chaffer, C. L.; et al. Normal and neoplastic nonstem cells can 151 spontaneously convert to a stem-like state. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 7950−5
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295623/
ACS Medicinal Chemistry paper – Systems Therapeutic 2014
1. Noble, D. A theory of biological relativity: no privileged level of causation. Interface Focus 2012, 2, 55−64
http://rsfs.royalsocietypublishing.org/content/2/1/55
2. Bundo, M.; Toyoshima, M.; Okada, Y.; Akamatsu, W.; Ueda, J.; Nemoto-Miyauchi, T.; Sunaga, F.; Toritsuka, M.; Ikawa, D.; Kakita, A.; Kato, M.; Kasai, K.; Kishimoto, T.; Nawa, H.; Okano, H.; Yoshikawa, T.; Kato, T.; Iwamoto, K. Increased L1 retrotransposition in the neuronal genome in schizophrenia. Neuron 2014, 81, 306−313
http://www.ncbi.nlm.nih.gov/pubmed/24389010
3. Waters, D. J. Aging research 2011: exploring the pet dog paradigm. ILAR J. 2011, 52, 97−105
http://ilarjournal.oxfordjournals.org/content/52/1/97.abstract
4. Noble, D. Neo-Darwinism, the modern synthesis and selfish genes: are they of use in physiology? J. Physiol. 2011, 589, 1007−1015
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060581/
5. Hodgkin, A. L.; Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952, 117, 500−544
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413/pdf/jphysiol01442-0106.pdf
6. Nobel, D. Cardiac action and pacemaker potentials based on the Hodgkin−Huxley equations. Nature 1960, 188, 495−497
http://www.nature.com/nature/journal/v188/n4749/pdf/188495b0.pdf
7. Maguire, G. Using a systems-based approach to overcome reductionist strategies in the development of diagnostics. Expert Rev. Mol. Diagn. 2013, 13, 895−905.
http://www.ncbi.nlm.nih.gov/pubmed/24138553
8. Goldenfeld, N.; Woese, C. Life is physics: evolution as a collective phenomenon far from equilibrium. Ann. Rev. Condens. Matter Phys. 2011, 2, 375−399
http://guava.physics.uiuc.edu/~nigel/REPRINTS/2011/Goldenfeld-Woese%20Life%20is%20Physics%202011.pdf
9. Mead, C. Collective Electrodynamics; MIT Press: Cambridge, MA, 2006
https://mitpress.mit.edu/books/collective-electrodynamics
10. Maguire, G. Stem cell therapy without the cells. Commun. Inter. Biol. 2013, DOI: 10.4161/cib.26631
http://www.ncbi.nlm.nih.gov/pubmed/24567776
Comm and Integrative Biology Article
1. Czechowicz A, Weismann I. Purified hematopoietic stem cell transplantation—the next generation of blood and immune replacement. Immunol Allergy. Clin North Am. 2010; 30: 159–171
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3071240/
2. Tsao GJ, Allen JA, Kathryn A. Logronioa, Laura C. Lazzeronib, Shizurua J. Purified hematopoietic stem cell allografts reconstitute immunity superior to bone marrow. Proc Natl Acad Sci U S A. 2009;106: 3288–3293
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3071240/
3. Chimenti I, Smith RR, Li TS, Gerstenblith G, Messina E, Giacomello A, Marbán E. Relative roles of direct regeneration versus paracrine effects of human cardiospherederived cells transplanted into infarcted mice. Circulation Research 2010; 106: 971-980.
http://www.ncbi.nlm.nih.gov/pubmed/20110532
4. Lee JW, Krasnodembskaya A, McKenna DH, Song Y, Abbott J, Matthay MA. Therapeutic effects of human mesenchymal stem cells in ex vivo human lungs injured with live bacteria. Am. J. Respir Crit Care Med. 2013; 187: 751-760
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3678109/
5. Chien K R. Regenerative biology: heartbroken embryos heal. Nature 2012; 498: 439-440.
http://www.nature.com/nature/journal/v498/n7455/abs/nature12262.html
6. Sato T, Clevers H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 2013; 340: 1190-1194
7. Souders CA, Bowers SL, Baudino TA. Cardiac fibroblast: the renaissance cell. Circa Res; 105:1164-76.
http://www.ncbi.nlm.nih.gov/pubmed/19959782
8. Scandling JD, Busque S, Dejbakhsh-Jones S, Benike C, Sarwal M, Millan MT, Shizuru JA, Lowsky R, Engleman EG, Strober S. Tolerance and withdrawal of immunosuppressive drugs in patients given kidney and hematopoietic cell transplants. Am J Transplant 2012; 12: 1133–1145.
http://www.ncbi.nlm.nih.gov/pubmed/22405058
9. Warriner RA 3rd, Cardinal M; TIDE Investigators. Human fibroblast-derived dermal substitute: results from a treatment investigational device exemption (TIDE) study in diabetic foot ulcers. Adv Skin Wound Care 2011; 24:306-11.
http://www.ncbi.nlm.nih.gov/pubmed/22405058
10. Katagiri W, Osugi M, Kawai T, Ueda M. Novel cell-free regeneration of bone using stem cell-derived growth factors. Int J Oral Maxillofac Implants. 2013; 28:1009-16.11. Dissaranan C, Cruz MA, Kiedrowski MJ, Balog BM, Gill BC, Penn MS, Goldman HB, Damaser MS. Rat mesenchymal stem cell secretome promotes elastogenesis andfacilitates recovery from simulated childbirth injury. Cell Transplant 2013 Jul 17. [Epub ahead of print].
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3925653/
11. Agopian VG, Chen DC, Avansino JR, Stelzner M. Intestinal stem cell organoid transplantation generates neomucosa in dogs. J Gastrointest Surg. 2009; 13:971-82.
http://www.ncbi.nlm.nih.gov/pubmed/19165549
12. Menge T, Zhao Y, Zhao J, Wataha K, Gerber M, Zhang J, Letourneau P, Redell J, Shen L, Wang J, Peng Z, Xue H, Kozar R, Cox CS Jr, Khakoo AY, Holcomb JB, Dash PK, Pati S. Mesenchymal stem cells regulate blood-brain barrier integrity through TIMP3 release after traumatic brain injury. Sci Transl Med. 2012; 4:161ra150. Perspective Article by request of Pr. Dr. Baluska – Communicative & Integrative Biology
http://www.ncbi.nlm.nih.gov/pubmed/23175708
13. Maguire G, Friedman P, McCarthy D, Friedman R, Maniotis AJ. Stem cell released molecules and exosomes in tissue engineering. Procedia Engineering 2013; 59: 270–278.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4444614/
14. Lai RC, Yeo RW, Tan KH, Lim SK. Exosomes for drug delivery – a novel application for the mesenchymal stem cell. Biotechnol Adv. 2013; 31:543-551.
http://www.ncbi.nlm.nih.gov/pubmed/22959595
15. Mead CA. Collective Electrodynamics, MIT Press, 2000.
https://mitpress.mit.edu/books/collective-electrodynamics
16. Lupski, J.R. Genetics. Genome mosaicism–one human, multiple genomes. Science 2013; 341: 358-359. Maguire G. Using a systems-based approach to overcome reductionist strategies in the development of diagnostics. Expert Rev Mol. Diagnostics. In Press.
http://www.ncbi.nlm.nih.gov/pubmed/24138553
17. Barbour J, Pfister H . Mach’s Principle: From Newton’s Bucket to Quantum Gravity (Einstein Studies). Birkhauser,1995.
http://arxiv.org/pdf/physics/0407078.pdf
18. Ainsworth C. Cell biology: Stretching the imagination. Nature. 2008; 456:696–699. Maniotis AJ, Chen CS, Ingber DE. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. PNAS U S A. 1997: 94: 849–854.
http://www.ncbi.nlm.nih.gov/pubmed/9023345
19. Maguire G, Connaughton V, Prat AG, Jackson GR Jr, Cantiello HF. Actin cytoskeleton regulates ion channel activity in retinal neurons. NeuroReport 1998; 9:665-671. Perspective Article by request of Pr. Dr. Baluska – Communicative & Integrative Biology
http://www.ncbi.nlm.nih.gov/pubmed/9559935
20. Engler A J, Sen S, Sweeney H L, Discher D E. Matrix elasticity directs stem cell lineage specification. Cell 2006: 126, 677–689.
http://www.ncbi.nlm.nih.gov/pubmed/16923388
21. Solon J, Levental I, Sengupta K, Georges PC, Janmey PA. Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys J. 2007; 93: 4453–4461.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2098710/
22. Maguire G, Friedman, P. The Systems Biology of Stem Cell Released Molecules—Based Therapeutics. ISRN Stem Cells 2013; Article ID 784541, 12 pages.
http://www.oalib.com/paper/3089623#.Vv9fYPkrKM8
23. Kathju S, Gallo PH, Satish L. Scarless integumentary wound healing in the mammalian fetus: molecular basis and therapeutic implications. Birth Defects Research 2012; 96: 223-236.
24. Dvorak, H F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986; 315:1650-1659.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1994795/
25. Lorenz HP, Longaker MT, Perkocha LA, Jennings, RW, Harrison MR, Adzick NS. Scarless wound repair: a human fetal skin model. Development 1992; 114: 253-259.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1011349/
Elsevier Exosome Book Chapter Proofs
1. Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., Wood, M.J., 2011. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29 (4), 341_345. Available from: http://dx.doi.org/10.1038/nbt.1807.
http://www.ncbi.nlm.nih.gov/pubmed/21423189
2. Armstead, A.L., Li, B., 2011. Nanomedicine as an emerging approach against intracellular pathogens. Int. J. Nanomed. 6, 3281_3293.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3252676/
3. Atay, S., Gercel-Taylorb, C., Kesimerc, M., Taylor, D.D., 2011. Morphologic and proteomic characterization of exosomes released by cultured extravillous trophoblast cells. Exp. Cell Res., http://dx.doi.org/10.1016/j.yexcr.2011.01.014.
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0098667
4. Bellingham, S.A., Guo, B.B., Coleman, B.M., Hill, A.F., 2012. Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases? Front. Physial. Available from: http://dx.doi.org/10.3389/fphys.2012.00124.
http://www.ncbi.nlm.nih.gov/pubmed/22563321
5. Bhat, R., Bissell, M.J., 2014. Of plasticity and specificity: dialectics of the micro- and macro-environment and the organ phenotype. Wiley Interdiscip. Rev. Membr. Transp. Signal. 3 (2), 147_163.
http://www.ncbi.nlm.nih.gov/pubmed/24678448
6. Byeon, Y.E., Ryu, H.H., Park, S.S., Koyama, Y., Kikuchi, M., et al., 2010. Paracrine effect of canine allogenic umbilical cord blood-derived mesenchymal stromal cells mixed with beta-tricalcium phosphate on bone regeneration in ectopic implantations. Cytotherapy 12, 626_636. Available from:
http://dx.doi.org/10.3109/14653249.2010.481665.
7. Carayon, K., Chaoui, K., Ronzier, E., Lazar, I., Bertrand-Michel, J., Roques, V, et al., 2011. Proteolipidic composition of exosomes changes during reticulocyte maturation. J. Biol. Chem. 286 (39), 34426_34439.
http://www.ncbi.nlm.nih.gov/pubmed/21828046
8. Chen, T.S., Lai, R.C., Lee, M.M., Choo, A.B., Lee, C.N., Lim, S.K., 2010. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res. 38, 215_224. Available from:
http://dx.doi.org/10.1093/nar/gkp857.
9. Chen, T.S., et al., 2011. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J. Transl. Med. 9, 47_57.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100248/
10. Clayton, A., Turkes, A., Dewitt, S., Steadman, R., Mason, M.D., Hallett, M.B., 2004. Adhesion and signaling by B cell-derived exosomes: the role of integrins. FASEB J. 18, 977_979.
http://www.ncbi.nlm.nih.gov/pubmed/15059973
11. Clayton, A., Mitchell, J.P., Court, J., Linnane, S., Mason, M.D., Tabi, Z., 2008. Human tumor-derived exosomes down-modulate NKG2D expression. J. Immunol. 180 (11), 7249_7258.
http://www.ncbi.nlm.nih.gov/pubmed/18490724
12. Cretoiu, D., Cretoiu, S.M., Simionescu, A.A., Popescu, L.M., 2012a. Telocytes, a distinct type of cell among the stromal cells present in the lamina propria of jejunum. Pistol. Histopathol. 27, 1067_1078.
http://www.ncbi.nlm.nih.gov/pubmed/22763879
13. Cretoiu, S.M., Cretoiu, D., Popescu, L.M., 2012b. Human myometrium—the ultrastructural 3D network of telocytes. J. Cell. Mol. Med. 16, 2844_2849.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4118253/
14. Dear, J.W., Street, J.M., Bailey, M.A., 2012. Urinary exosomes: a reservoir for biomarker discovery and potential mediators of intra-renal signaling. Proteomics. Available from:
http://dx.doi.org/10.1002/pmic.201200285.
15. Dettre, R.H., Johnson, R.E.J., 1964. Contact angle hysteresis: II. Contact angle measurements on rough surfaces Contact S132. The dream of staying clean: lotus and biomimetic surfaces. In: Fowkes, F.M. (Ed.), Angle, Wettability, and Adhesion. American Chemical Society, Washington, DC, pp. 136_144.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.477.693&rep=rep1&type=pdf
16. Duijvesz, D., Luider, T., Bangma, C.H., Jenster, G., 2011. Exosomes as biomarker treasure chests for prostate cancer. Eur. Urol. 59, 823_831.
http://www.ncbi.nlm.nih.gov/pubmed/21196075
17. Diederick, D., Burnum-Johnson, K.E., Gritsenko, M.A., Hoogland, A.M., Vredenbregt-van den Berg, M.S., Willemsen, R., et al., 2013. Proteomic profiling of exosomes leads to the identification of novel biomarkers for prostate cancer. PLoS One 8 (12), e82589.
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0082589
18. Ekstro¨m, K., Valadi, H., Sjo¨strand, M., Malmha¨ll, C., Bossios, A., et al., 2012. Characterization of mRNA and microRNA in human mast cell-derived exosomes and their transfer to other mast cells and blood CD34 progenitor cells. J. Extracell. Vesicles http://dx.doi.org/10.3402/jev.v1i0.18389
19. Erickson, H.P., 2009. Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol. Proced. Online 11, 32_51. Available from:
http://www.biologicalproceduresonline.com/content/11/1/32
20. Faure, J., Lachenal, G., Court, M., Hirrlinger, J., Chatellard-Causse, C., Blot, B., et al.,2006. Exosomes are released by cultured cortical neurones. Mol. Cell. Neurosci. 31, 642_648.
http://www.ncbi.nlm.nih.gov/pubmed/16446100
21. Furstner, R., Barthlott, W., Neinhuis, C., Walzel, P., 2005. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 21, 956_961.
http://pubs.acs.org/doi/abs/10.1021/la0401011
22. Gallo, A., Tandon, M., Alevizos, I., Illei, G.G., 2012. The majority of micrornas detectable in serum and saliva is concentrated in exosomes. PLoS One 7, e30679. Gittes, F., Mickey, B., Nettleton, J., Howard, J., 1993. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120, 923_934.
http://dx.doi.org/10.1083/jcb.120.4.923
23. Gradilla, A.C., et al., 2014. Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nat. Commun. 5, 5649.
http://dx.doi.org/10.1038/ncomms6649
24. Haynesworth, S.E., Baber, M.A., Caplan, A.I., 1996. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1α. J. Cell. Physiol. 166, 585_592.
http://www.ncbi.nlm.nih.gov/pubmed/8600162
25. Hao, S., Bai, O., Li, F., Yuan, J., Laferte, S., Xiang, J., 2007. Mature dendritic cells pulsed with exosomes stimulate efficient cytotoxic T-lymphocyte responses and anti tumor immunity. Immunology 120 (1), 90_102.
http://www.ncbi.nlm.nih.gov/pubmed/17626150
26. Huang, L., Ma, W., Ma, Y., Feng, D., Chen, H., Cai, B., 2015. Exosomes in mesenchymal stem cells, a new therapeutic strategy for cardiovascular diseases? Int. J. Biol. Sci. 11 (2), 238_245.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4308409/
27. Hurley, J.H., Odorizzi, G., 2012. Get on the exosome bus with alix. Nat. Cell Biol. 14, 654_655.
http://www.ncbi.nlm.nih.gov/pubmed/22743708
28. Kato, T., et al., 2014. Exosomes from IL-1β stimulated synovial fibroblasts induce osteoarthritic changes in articular chondrocytes. Arthritis Res. Ther. 16, R163. Available from:
http://dx.doi.org/10.1186/ar4679
29. Ko, S., Yip, H.-K., Zhen, Y.-Y., et al., 2015. Adipose-derived mesenchymal stem cell exosomes suppress hepatocellular carcinoma growth in a rat model: apparent diffusion coefficient, natural killer T-cell responses, and histopathological features. Stem Cells AU:14 Int.Article ID 853506
http://www.hindawi.com/journals/sci/2015/853506/
30. Kraft, J.C., Freeling, J.P., Wang, Z., Ho, R.J.Y., 2014. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J. Pharm. Sci. 103, 29_52
http://www.ncbi.nlm.nih.gov/pubmed/24338748
31. Erickson, H.P., 2009. Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol. Proced. Online 11, 32_51.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055910/
32. Faure, J., Lachenal, G., Court, M., Hirrlinger, J., Chatellard-Causse, C., Blot, B., et al.,2006. Exosomes are released by cultured cortical neurones. Mol. Cell. Neurosci. 31, 642_648.
http://www.ncbi.nlm.nih.gov/pubmed/16446100
33. Feynman, R., 1992. There’s plenty of room at the bottom. J. Microeleciromech. Syst. 1 (i), 60_66.
http://ieeexplore.ieee.org/book/0780310853.excerpt.pdf
34. Furstner, R., Barthlott, W., Neinhuis, C., Walzel, P., 2005. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 21, 956_961.
http://pubs.acs.org/doi/abs/10.1021/la0401011
35. Gallo, A., Tandon, M., Alevizos, I., Illei, G.G., 2012. The majority of microns detectable in serum and saliva is concentrated in exosomes. PLoS One 7, e30679.
http://www.ncbi.nlm.nih.gov/pubmed/22427800
36. Gittes, F., Mickey, B., Nettleton, J., Howard, J., 1993. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120, 923_934.
http://dx.doi.org/10.1083/jcb.120.4.923.
37. Gradilla, A.C., et al., 2014. Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nat. Commun. 5, 5649. ncomms6649.
38. Haynesworth, S.E., Baber, M.A., Caplan, A.I., 1996. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1α. J. Cell. Physiol. 166, 585_592.
http://www.ncbi.nlm.nih.gov/pubmed/8600162
39. Hao, S., Bai, O., Li, F., Yuan, J., Laferte, S., Xiang, J., 2007. Mature dendritic cells pulsed with exosomes stimulate efficient cytotoxic T-lymphocyte responses and anti tumor immunity. Immunology 120 (1), 90_102.
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2567.2006.02483.x/abstract
40. Huang, L., Ma, W., Ma, Y., Feng, D., Chen, H., Cai, B., 2015. Exosomes in mesenchymal stem cells, a new therapeutic strategy for cardiovascular diseases? Int. J. Biol. Sci. 11 (2), 238_245.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4308409/
41. Kato, T., et al., 2014. Exosomes from IL-1β stimulated synovial fibroblasts induce osteoarthritic changes in articular chondrocytes. Arthritis Res. Ther. 16, R163.
http://dx.doi.org/10.1186/ar4679
42. Ko, S., Yip, H.-K., Zhen, Y.-Y., et al., 2015. Adipose-derived mesenchymal stem cell exosomes suppress hepatocellular carcinoma growth in a rat model: apparent diffusion coefficient, natural killer T-cell responses, and histopathological features. Stem Cells AU:14 Int.Article ID 853506.
http://www.hindawi.com/journals/sci/2015/853506/
43. Kraft, J.C., Freeling, J.P., Wang, Z., Ho, R.J.Y., 2014. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J. Pharm. Sci. 103, 29_52
http://www.ncbi.nlm.nih.gov/pubmed/24338748
44. Lai, Y., Gallo, R.L., 2009. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 30, 131_141.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765035/
45. Lai, R.C., Arslan, F., Lee, M.M., Sze, N.S., Choo, A., Chen, T.S., 2010. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 4, 214_222.
http://www.ncbi.nlm.nih.gov/pubmed/20138817
46. Lee, J.K., Park, S.R., Jung, B.K., Jeon, Y.K., Lee, Y.S., Kim, M.K., et al., 2013. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One 8 (12), e84256, http://dx.doi.org/10.1371/journal.pone.0084256
http://www.ncbi.nlm.nih.gov/pubmed/24391924
47. Lugini, L., Cecchetti, S., Huber, V., Luciani, F., Macchia, G., Spadaro, F., et al., 2012. Immune surveillance properties of human NK cell-derived exosomes. J. Immunol. 189, 2833_2842.
http://www.ncbi.nlm.nih.gov/pubmed/22904309
48. Luesma, M.J., Gherghiceanu, M., Popescu, L.M., 2013. Telocytes and stem cells in limbus and uvea of mouse eye. J. Cell. Mol. Med. 17, 1016_1024.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3780542/
49. Maguire, G., 2013a. Using a systems-based approach to overcome reductionist strategies in the development of diagnostics. Expert Rev. Mol. Diagn. 13 (8), 895_905.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4027758/
50. Maguire, G., 2013b. Stem cell therapy without the cells. Commun. Integr. Biol. 6 (6), e26631.
http://www.ncbi.nlm.nih.gov/pubmed/24567776
51. Maguire, G., 2014a. Systems biology approach to developing “systems therapeutics”. ACS Med. Chem. Lett. 5 (5), 453_455,
http://dx.doi.org/10.1021/ml5000614
52. Maguire, G., 2014b. Maturing from embryonic to adult policy on stem cell therapeutics. ACS Med. Chem. Lett. 5 (12), 1264_1265, eCollection December 11, 2014
http://dx.doi.org/10.1021/ml500396z.
53. Maguire, G., Friedman, P., 2015. Systems biology approach to developing S2RM-based “systems therapeutics” and NiPSs. World J. Stem Cells (in press).
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4444614/
54. Maguire, G., Friedman, P., McCarthy, D., Friedman, R., Maniotis, A., 2013. Stem cell released molecules and exosomes in tissue engineering. Procedia Eng. 59, 270_278,
http://dx.doi.org/10.1016/j.proeng.2013.05.121
55. Makino, D.L., Halbach, F., Conti, E., 2013. The RNA exosome and proteasome: common principles of degradation control. Nat. Rev. Mol. Cell Biol. 14 (10), 654_660, Epub 2013 Aug 29.
http://dx.doi.org/10.1038/nrm3657
56. Mallipeddi, R., Rohan, L.C., 2010. Nanoparticle-based vaginal drug delivery systems for HIV prevention. Expert Opin. Drug Deliv. 7 (1), 37_48.
http://www.ncbi.nlm.nih.gov/pubmed/20017659
57. Mathivanan, S., Lim, J.W.E., Tauro, B.J., Ji, H., Moritz, R.L., Simpson, R.J., 2010. Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol. Cell. Proteomics 9 (2), 197_208.
http://www.ncbi.nlm.nih.gov/pubmed/19837982
58. Mead, C., 2013. The Nature of Light: What are “Photons”? In: The Nature of Light: What are Photons? V. Proceedings of SPIE. No.8832. Society of Photo-Optical Instrumentation Engineers (SPIE), Bellingham, WA, Art. No. 883202. ISBN: 9780819496829 ,
http://resolver.caltech.edu/CaltechAUTHORS:20131209-074730086
59. Moore, K.S., Wehrli, S., Roder, H., Rogers, M., Forrest, J.N., McCrimmon, D., et al.,1993. Squalamine: an aminosterol antibiotic from the shark. Proc. Natl. Acad. Sci. U.S. 199. 90 (4), 1354_1358, PMCID: PMC45871.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC45871/
60. Pant, S., Hilton, H., Burczynski, M.E., 2012. The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochem. Pharmacol. 83, 1484_1494.
http://www.ncbi.nlm.nih.gov/pubmed/22230477
61. Parolini, I., Federici, C., Raggi, C., Lugini, L., Palleschi, S., de Milito, A., et al., 2009. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J. Biol. Chem. 284, 34211_34222.
http://www.ncbi.nlm.nih.gov/pubmed/19801663
62. Petersen, S.H., Odintsova, E., Haigh, T.A., Rickinson, A.B., Taylor, G.S., Berditchevski, F., 2011. The role of tetraspanin CD63 in antigen presentation via MHC class II. Eur. 2561. Immunol. 41, 2556_2561.
http://www.ncbi.nlm.nih.gov/pubmed/21660937
63. Ramteke, A., Ting, H., Agarwal, C., Mateen, S., Somasagara, R., Hussain, A., et al., 2013. Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Mol. Carcinog.,
http://dx.doi.org/10.1002/mc.22124
64. Raposo, G., Nijman, H., Stoorvogel, W., Liejendekker, R., Harding, C., Melief, C., et al.,1996. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183, 1161_1172. Ratajczak, J., Miekus, K., Kucia, M., Zhang, J., Reca, R., Dvorak, P., et al., 2006.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3726927/
65. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20, 847_856.
http://www.ncbi.nlm.nih.gov/pubmed/16453000
66. Reese, T.S., Morris, K., 1967. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell Biol. 34 (1), 207_217
http://dx.doi.org/10.1083/jcb.34.1.207
67. Richards, F.M., 1974. The interpretation of protein structures: total volume, group volume distributions and packing density. J. Mol. Biol. 82, 1_14, doi:10.1016/0022-2836(74) 90570-1.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4379742/
68. Riches, A., Campbell, E., Borger, E., Powis, S., 2014. Regulation of exosome release from mammary epithelial and breast cancer cells—a new regulatory pathway. Eur. J. Cancer. 50 (5), 1025_1034, Epub 2014 Jan 22
http://dx.doi.org/10.1016/j.ejca.2013.12.019
69. Rubin, L.L., Staddon, J.M., 1999. The cell biology of the blood-brain barrier. Annu. Rev. Neurosci. 22 (1), 11_28
http://www.ncbi.nlm.nih.gov/pubmed/10202530
70. Sahoo, S., Klychko, E., Thorne, T., Misener, S., Schultz, K.M., Millay, M., et al., 2011. Exosomes from human CD34(1) stem cells mediate their proangiogenic paracrine activity. Circ. Res. 109, 724_728.
http://www.ncbi.nlm.nih.gov/pubmed/21835908
71. Salomon, C., Ryan, J., Sobrevia, L., Kobayashi, M., Ashman, K., et al., 2013. Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS One 8 (7), e68451.
http://dx.doi.org/10.1371/journal.pone.0068451
72. Sandvig, K., Llorente, A., 2012. Proteomic analysis of microvesicles released by the human prostate cancer cell line PC-3. Mol. Cell. Proteomics 11 (7), M111.012914.
http://www.ncbi.nlm.nih.gov/pubmed/22457534
73. Savina, A., Furlan, M., Vidal, M., Colombo, M.I., 2003. Exosome release is regulated by a calcium-dependent mechanism in k562 cells. J. Biol. Chem. 278, 20083_20090.
http://www.ncbi.nlm.nih.gov/pubmed/12639953
74. Savina, A., Fader, C.M., Damiani, M.T., Colombo, M.I., 2005. Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic 6, 131_143
http://www.ncbi.nlm.nih.gov/pubmed/15634213
75. Segura, E., Guerin, C., Hogg, N., Amigorena, S., Thery, C., 2007. CD81 dendritic cells use lfa-1 to capture MHC-peptide complexes from exosomes in vivo. J. Immunol. 179, 1489_1496.
http://www.ncbi.nlm.nih.gov/pubmed/17641014
76. Seke Etet, P.F., Vecchio, L., Nwabo Kamdje, A.H., 2012. Signaling pathways in chronic myeloid leukemia and leukemic stem cell maintenance: key role of stromal microenvironment. Cell. Signal. 24, 1883_1888.
http://dx.doi.org/10.1016/j.cellsig.2012.05.015
77. Shen, B., Wu, N., Yang, J.M., Gould, S.J., 2011. Protein targeting to exosomes/microvesicles by plasma membrane anchors. J. Biol. Chem. 286, 14383_14395.
http://www.ncbi.nlm.nih.gov/pubmed/21300796
78. Siegel, L.M., Monty, K.J., 1966. Biochim. Biophys. Acta 112, 346_362. Skriner, K., Adolph, K., Jungblut, P., Burmester, G., 2006. Association of citrullinated proteins with synovial exosomes. Arthritis Rheum. 54, 3809_3814. Sprent, J., 2005. Direct stimulation of naive T cells by antigen-presenting cell vesicles. Blood Cells Mol. Dis. 35, 17_20.
http://www.ncbi.nlm.nih.gov/pubmed/15932799
79. Suntres, Z.E., Smith, M.G., Momen-Heravi, F., Hu, J., Zhang, X., Wu, Y., et al., 2013. Therapeutic uses of exosomes. Intech.
http://dx.doi.org/10.5772/56522
80. Tan, A., De La Pena, H., Seifalian, A.M., 2010. The application of exosomes as a nanoscale cancer vaccine. Int. J. Nanomed. 5, 889_900.
http://www.ncbi.nlm.nih.gov/pubmed/21116329
81. Tan, S.S., Yin, Y., Lee, T., Lai, R.C., Yeo, R.W., et al., 2013. Therapeutic MSC exosomes are derived rom lipid raft microdomains in the plasma membrane. J. Extracell. Vesicles 2.
http://dx.doi.org/10.3402/jev.v2i0.22614
82. Thormar, H., Hilmarsson, H., Bergsson, G., 2013. Antimicrobial lipids: role in innate immunity and potential use in prevention and treatment of infections. In: Me´ndez-Vilas, A. (Ed.), Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education, vol. 3. Formatex, pp. 1474_1488. , ISBN: 978-84-942134-1-0. AU:15 Tian, Y., Li, S., Song, J., Ji, T., Zhu, M., Anderson, G.J., et al., 2014. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35, 2383_2390.
http://www.formatex.info/microbiology4/vol3/1474-1488.pdf
83. Torregrosa Paredes, P., Esser, J., Admyre, C., Nord, M., Rahman, Q.K., Lukic, A., et al.,2012. Bronchoalveolar lavage fluid exosomes contribute to cytokine and leukotriene production in allergic asthma. Allergy 67, 911_919.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013392/
84. Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., et al., 2008. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319 (5867), 1244_1247.
http://www.ncbi.nlm.nih.gov/pubmed/18309083
85. Veron, P., Segura, E., Sugano, G., Amigorena, S., Thery, C., 2005. Accumulation of MFGE8/lactadherin on exosomes from immature dendritic cells. Blood Cells Mol. Dis. 35, 81_88.
http://www.ncbi.nlm.nih.gov/pubmed/15982908
86. Wahlgren, J., de Karlson, L.T., Brisslert, M., vaziri Sani, F., Telemo, E., Sunnerhagen, P., et al., 2012. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res. 40, e130.
http://www.ncbi.nlm.nih.gov/pubmed/22618874
87. Xin, H., Li, Y., Cui, Y., Yang, J.J., Zhang, Z.G., Chopp, M., 2013. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J. Cerebral Blood Flow Metab.PMID:
http://www.ncbi.nlm.nih.gov/pubmed/23963371
88. Yeaman, M.R., Yount, N.Y., 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55 (1), 27_55
http://www.ncbi.nlm.nih.gov/pubmed/12615953
89. Yoshioka, Y., et al., 2014. Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen. Nat. Commun. 5, Article number: 3591
http://dx.doi.org/10.1038/ncomms4591
90. Yu, X., Riley, T., Levine, A.J., 2009. The regulation of the endosomal compartment by p53 the tumor suppressor gene. FEBS J. 276, 2201_2212.
http://www.ncbi.nlm.nih.gov/pubmed/19302216
91. Zasloff, M., 1987. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC298875/
92. Zhang, H.C., Liu, X.B., Huang, S., Bi, X.Y., Wang, H.X., et al., 2012. Micro vesicles derived from human umbilical cord mesenchymal stem cells stimulated by hypoxia promote angiogenesis both in vitro and in vivo. Stem Cells Dev. 21, 3289_3297.
http://www.ncbi.nlm.nih.gov/pubmed/22839741
93. Zhang, Y., et al., 2015. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J. Neurosurg..
http://dx.doi.org/10.3171/2014.11JNS14770
94. Zhou, H., Yuen, P.S.T., Pisitkun, T., et al., 2006. Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int. 69, 1471_1476.
http://www.ncbi.nlm.nih.gov/pubmed/16501490
95. Zoller, M., 2009. Tetraspanins: push and pull in suppressing and promoting metastasis. Nat. Rev. Cancer 9, 40_55
http://www.ncbi.nlm.nih.gov/pubmed/19078974
WJSC— World Journal of Stem Cell
1. Cauffman G, De Rycke M, Sermon K, Liebaers I, Van de Velde H. Markers that define stemness in ESC are unable to identify the totipotent cells in human preimplantation embryos. Hum Reprod 2009; 24: 63-70 [PMID: 18824471 DOI: 10.1093/humrep/den351]
http://www.ncbi.nlm.nih.gov/pubmed/18824471
2. Macotela Y, Emanuelli B, Mori MA, Gesta S, Schulz TJ, Tseng YH, Kahn CR. Intrinsic differences in adipocyte precursor cells from different white fat depots. Diabetes 2012; 61: 1691-1699 [PMID: 22596050 DOI: 10.2337/db11-1753]
http://www.ncbi.nlm.nih.gov/pubmed/22596050
3. Ong WK, Tan CS, Chan KL, Goesantoso GG, Chan XH, Chan E, Yin J, Yeo CR, Khoo CM, So JB, Shabbir A, Toh SA, Han W, Sugii S. Identification of specific cell-surface markers of adiposederived stem cells from subcutaneous and visceral fat depots. Stem Cell Reports 2014; 2: 171-179 [PMID: 24527391 DOI: 10.1016/ j.stemcr.2014.01.002]
http://www.ncbi.nlm.nih.gov/pubmed/24527391
4. Sze SK, de Kleijn DP, Lai RC, Khia Way Tan E, Zhao H, Yeo KS, Low TY, Lian Q, Lee CN, Mitchell W, El Oakley RM, Lim SK. Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells. Mol Cell Proteomics 2007; 6: 1680-1689 [PMID: 17565974 DOI: 10.1074/mcp.M600393- MCP200]
http://www.ncbi.nlm.nih.gov/pubmed/17565974
5. Ribeiro CA, Fraga JS, Grãos M, Neves NM, Reis RL, Gimble JM, Sousa N, Salgado AJ. The secretome of stem cells isolated from the adipose tissue and Wharton jelly acts differently on central nervous system derived cell populations. Stem Cell Res Ther 2012; 3: 18 [PMID: 22551705 DOI: 10.1186/scrt109]
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3392765/
6. Berardis S, Lombard C, Evraerts J, El Taghdouini A, Rosseels V, Sancho-Bru P, Lozano JJ, van Grunsven L, Sokal E, Najimi M. Gene expression profiling and secretome analysis differentiate adult-derived human liver stem/progenitor cells and human hepatic stellate cells. PLoS One 2014; 9: e86137 [PMID: 24516514 DOI: 10.1371/journal.pone.0086137]
http://www.ncbi.nlm.nih.gov/pubmed/24516514
7. Kato T, Okumi M, Tanemura M, Yazawa K, Kakuta Y, Yamanaka K, Tsutahara K, Doki Y, Mori M, Takahara S, Nonomura N. Adipose tissue-derived stem cells suppress acute cellular rejection by TSG-6 and CD44 interaction in rat kidney transplantation. Transplantation 2014; 98: 277-284 [PMID: 24983309 DOI: 10.1097/TP.0000000000000230]
http://www.ncbi.nlm.nih.gov/pubmed/24983309
8. Crisostomo PR, Wang M, Wairiuko GM, Morrell ED, Terrell AM, Seshadri P, Nam UH, Meldrum DR. High passage number of stem cells adversely affects stem cell activation and myocardial protection. Shock 2006; 26: 575-580 [PMID: 17117132 DOI: 10.1097/01.shk.0000235087.45798.93]
http://www.ncbi.nlm.nih.gov/pubmed/17117132
9. Deschene ER, Myung P, Rompolas P, Zito G, Sun TY, Taketo MM, Saotome I, Greco V. β-Catenin activation regulates tissue growth non-cell autonomously in the hair stem cell niche. Science 2014; 343: 1353-1356 [PMID: 24653033 DOI: 10.1126/science.1248373]
http://www.ncbi.nlm.nih.gov/pubmed/24653033
10. Park CW, Kim KS, Bae S, Son HK, Myung PK, Hong HJ, Kim H. Cytokine secretion profiling of human mesenchymal stem cells by antibody array. Int J Stem Cells 2009; 2: 59-68 [PMID: 24855521 DOI: 10.15283/ijsc.2009.2.1.59]
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4178255/
11. Ju Z, Jiang H, Jaworski M, Rathinam C, Gompf A, Klein C, Trumpp A, Rudolph KL. Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment. Nat Med 2007; 13: 742-747 [PMID: 17486088 DOI: 10.1038/nm1578]
http://www.ncbi.nlm.nih.gov/pubmed/17486088
12. Lee MJ, Kim J, Kim MY, Bae YS, Ryu SH, Lee TG, Kim JH. Proteomic analysis of tumor necrosis factor-alpha-induced secretome of human adipose tissue-derived mesenchymal stem cells. J Proteome Res 2010; 9: 1754-1762 [PMID: 20184379 DOI: 10.1021/pr900898n]
http://www.ncbi.nlm.nih.gov/pubmed/20184379
13. Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One 2010; 5: e10088 [PMID: 20436665 DOI: 10.1371/ journal.pone.0010088]
http://www.ncbi.nlm.nih.gov/pubmed/20436665
14. Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, Epstein SE. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 2004; 94: 678-685 [PMID: 14739163 DOI: 10.1161/01. RES.0000118601.37875.AC]
http://www.ncbi.nlm.nih.gov/pubmed/14739163
15. Oskowitz A, McFerrin H, Gutschow M, Carter ML, Pochampally R. Serum-deprived human multipotent mesenchymal stromal cells (MSCs) are highly angiogenic. Stem Cell Res 2011; 6: 215-225 [PMID: 21421339 DOI: 10.1016/j.scr.2011.01.004]
http://www.ncbi.nlm.nih.gov/pubmed/21421339
16. Keats E, Khan ZA. Unique responses of stem cell-derived vascular endothelial and mesenchymal cells to high levels of glucose. PLoS One 2012; 7: e38752 [PMID: 22701703 DOI: 10.1371/journal. pone.0038752]
http://www.ncbi.nlm.nih.gov/pubmed/22701703
17. Baer PC. Adipose-derived mesenchymal stromal/stem cells: An update on their phenotype in vivo and in vitro. World J Stem Cells 2014; 6: 256-265 [PMID: 25126376 DOI: 10.4252/wjsc.v6.i3.256] Ehninger A, Boch T, Medyouf H, Müdder K, Orend G, Trumpp A. Loss of SPARC protects hematopoietic stem cells from chemotherapy toxicity by accelerating their return to quiescence. Blood 2014; 123: 4054-4063 [PMID: 24833352 DOI: 10.1182/ blood-2013-10-533711]
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4444614/
18. Sun LY, Pang CY, Li DK, Liao CH, Huang WC, Wu CC, Chou YY, Li WW, Chen SY, Liu HW, Chang YJ, Cheng CF. Antioxidants cause rapid expansion of human adipose-derived mesenchymal stem cells via CDK and CDK inhibitor regulation. J Biomed Sci 2013; 20: 53 [PMID: 23915242 DOI: 10.1186/1423-0127-20-53]
http://www.ncbi.nlm.nih.gov/pubmed/23915242
19. Tata PR, Mou H, Pardo-Saganta A, Zhao R, Prabhu M, Law BM, Vinarsky V, Cho JL, Breton S, Sahay A, Medoff BD, Rajagopal J. Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature 2013; 503: 218-223 [PMID: 24196716 DOI: 10.1038/ nature12777]
http://www.ncbi.nlm.nih.gov/pubmed/24196716]
20. Su G, Zhao Y, Wei J, Xiao Z, Chen B, Han J, Chen L, Guan J, Wang R, Dong Q, Dai J. Direct conversion of fibroblasts into neural progenitor-like cells by forced growth into 3D spheres on low attachment surfaces. Biomaterials 2013; 34: 5897-5906 [PMID: 23680365 DOI: 10.1016/j.biomaterials.2013.04.040]
http://www.ncbi.nlm.nih.gov/pubmed/23680365
21. Yanes O, Clark J, Wong DM, Patti GJ, Sánchez-Ruiz A, Benton HP, Trauger SA, Desponts C, Ding S, Siuzdak G. Metabolic oxidation regulates embryonic stem cell differentiation. Nat Chem Biol 2010; 6: 411-417 [PMID: 20436487 DOI: 10.1038/nchembio.364]
http://www.ncbi.nlm.nih.gov/pubmed/20436487
22. Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, SaltoTellez M, Timmers L, Lee CN, El Oakley RM, Pasterkamp G, de Kleijn DP, Lim SK. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 2010; 4: 214-222 [PMID: WJSC|www.wjgnet.com 753 May 26, 2015|Volume 7|Issue 4| Maguire G et al. Stem cell systems therapeutics 20138817 DOI: 10.1016/j.scr.2009.12.003]
http://www.ncbi.nlm.nih.gov/pubmed/20138817
23. Gokoffski KK, Wu HH, Beites CL, Kim J, Kim EJ, Matzuk MM, Johnson JE, Lander AD, Calof AL. Activin and GDF11 collaborate in feedback control of neuroepithelial stem cell proliferation and fate. Development 2011; 138: 4131-4142 [PMID: 21852401 DOI: 10.1242/dev.065870]
http://www.ncbi.nlm.nih.gov/pubmed/21852401
24. Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS, Wojtkiewicz GR, Chen JW, Lee RT, Wagers AJ, Rubin LL. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 2014; 344: 630-634 [PMID: 24797482 DOI: 10.1126/science.1251141]
http://www.ncbi.nlm.nih.gov/pubmed/24797482
25. Maguire G. Systems biology approach to developing “systems therapeutics”. ACS Med Chem Lett 2014; 5: 453-455 [PMID: 24900858 DOI: 10.1021/ml5000614]
http://europepmc.org/articles/PMC4027758
26. Li F, Huang Q, Chen J, Peng Y, Roop DR, Bedford JS, Li CY. Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci Signal 2010; 3: ra13 [PMID: 20179271 DOI: 10.1126/scisignal.2000634]
http://www.ncbi.nlm.nih.gov/pubmed/20179271
27. Fan Y, Bergmann A. Apoptosis-induced compensatory proliferation. The Cell is dead. Long live the Cell! Trends Cell Biol 2008; 18: 467-473 [PMID: 18774295 DOI: 10.1016/j.tcb.2008.08.001]
http://www.ncbi.nlm.nih.gov/pubmed/18774295
28. Rowlatt U. Intrauterine wound healing in a 20 week human fetus. Virchows Arch A Pathol Anat Histol 1979; 381: 353-361 [PMID: 155931 DOI: 10.1007/BF00432477]
http://www.ncbi.nlm.nih.gov/pubmed/155931
29. Longaker MT, Whitby DJ, Ferguson MW, Lorenz HP, Harrison MR, Adzick NS. Adult skin wounds in the fetal environment heal with scar formation. Ann Surg 1994; 219: 65-72 [PMID: 8297179 DOI: 10.1097/00000658-199401000-00011]
http://www.ncbi.nlm.nih.gov/pubmed/8297179
30. Rennert RC, Sorkin M, Januszyk M, Duscher D, Kosaraju R, Chung MT, Lennon J, Radiya-Dixit A, Raghvendra S, Maan ZN, Hu MS, Rajadas J, Rodrigues M, Gurtner GC. Diabetes impairs the angiogenic potential of adipose-derived stem cells by selectively depleting cellular subpopulations. Stem Cell Res Ther 2014; 5: 79 [PMID: 24943716 DOI: 10.1186/scrt468]
http://www.ncbi.nlm.nih.gov/pubmed/24943716
31. Cramer C, Freisinger E, Jones RK, Slakey DP, Dupin CL, Newsome ER, Alt EU, Izadpanah R. Persistent high glucose concentrations alter the regenerative potential of mesenchymal stem cells. Stem Cells Dev 2010; 19: 1875-1884 [PMID: 20380516 DOI: 10.1089/scd.2010.0009]
http://www.ncbi.nlm.nih.gov/pubmed/20380516
32. Fathke C, Wilson L, Hutter J, Kapoor V, Smith A, Hocking A, Isik F. Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair. Stem Cells 2004; 22: 812-822 [PMID: 15342945 DOI: 10.1634/stemcells.22-5-812]
http://www.ncbi.nlm.nih.gov/pubmed/15342945
33. Tamai K, Yamazaki T, Chino T, Ishii M, Otsuru S, Kikuchi Y, Iinuma S, Saga K, Nimura K, Shimbo T, Umegaki N, Katayama I, Miyazaki J, Takeda J, McGrath JA, Uitto J, Kaneda Y. PDGFRalpha-positive cells in bone marrow are mobilized by high mobility group box 1 (HMGB1) to regenerate injured epithelia. Proc Natl Acad Sci USA 2011; 108: 6609-6614 [PMID: 21464317 DOI: 10.1073/pnas.1016753108]
http://www.ncbi.nlm.nih.gov/pubmed/21464317
34. Lawrence WT. Physiology of the acute wound. Clin Plast Surg 1998; 25: 321-340 [PMID: 9696896]
http://www.ncbi.nlm.nih.gov/pubmed/9696896
35. Fu S, Liesveld J. Mobilization of hematopoietic stem cells. Blood Rev 2000; 14: 205-218 [PMID: 11124108 DOI: 10.1054/ blre.2000.0138]
http://www.ncbi.nlm.nih.gov/pubmed/11124108
36. Kucia M, Ratajczak J, Reca R, Janowska-Wieczorek A, Ratajczak MZ. Tissue-specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury. Blood Cells Mol Dis 2004; 32: 52-57 [PMID: 14757413 DOI: 10.1016/j.bcmd.2003.09.025]
http://www.ncbi.nlm.nih.gov/pubmed/14757413
37. Nemeth K, Wilson T, Rada B, Parmelee A, Mayer B, Buzas E, Falus A, Key S, Masszi T, Karpati S, Mezey E. Characterization and function of histamine receptors in human bone marrow stromal cells. Stem Cells 2012; 30: 222-231 [PMID: 22045589 DOI: 10.1002/stem.771]
http://www.ncbi.nlm.nih.gov/pubmed/22045589
38. Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 2009; 37: 1528-1542 [PMID: 19930861 DOI: 10.1177/1473230009 03700531]
http://imr.sagepub.com/content/37/5/1528?patientinform-links=yes&legid=spimr;37/5/1528
39. Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 2004; 9: 283-289 [PMID: 14766366 DOI: 10.2741/1184]
http://www.ncbi.nlm.nih.gov/pubmed/14766366
40. Witte MB, Barbul A. General principles of wound healing. Surg Clin North Am 1997; 77: 509-528 [PMID: 9194878 DOI: 10.1016/ S0039-6109(05)70566-1]
http://www.ncbi.nlm.nih.gov/pubmed/14766366
41. Goldman R. Growth factors and chronic wound healing: past, present, and future. Adv Skin Wound Care 2004; 17: 24-35 [PMID: 14752324 DOI: 10.1097/00129334-200401000-00012]
http://www.ncbi.nlm.nih.gov/pubmed/14752324
42. Ramasastry SS. Acute wounds. Clin Plast Surg 2005; 32: 195-208 [PMID: 15814117 DOI: 10.1016/j.cps.2004.12.001]
http://www.ncbi.nlm.nih.gov/pubmed/15814117
43. Chen L, Tredget EE, Wu PY, Wu Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 2008; 3: e1886 [PMID: 18382669 DOI: 10.1371/journal.pone.0001886]
http://www.ncbi.nlm.nih.gov/pubmed/18382669
44. Smith AN, Willis E, Chan VT, Muffley LA, Isik FF, Gibran NS, Hocking AM. Mesenchymal stem cells induce dermal fibroblast responses to injury. Exp Cell Res 2010; 316: 48-54 [PMID: 19666021 DOI: 10.1016/j.yexcr.2009.08.001]
http://www.ncbi.nlm.nih.gov/pubmed/19666021
45. Hocking AM, Gibran NS. Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Exp Cell Res 2010; 316: 2213-2219 [PMID: 20471978 DOI: 10.1016/ j.yexcr.2010.05.009]
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902653/
46. Tasso R, Augello A, Boccardo S, Salvi S, Caridà M, Postiglione F, Fais F, Truini M, Cancedda R, Pennesi G. Recruitment of a host’ s osteoprogenitor cells using exogenous mesenchymal stem cells seeded on porous ceramic. Tissue Eng Part A 2009; 15: 2203-2212 [PMID: 19265473 DOI: 10.1089/ten.tea.2008.0269]
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902653/
47. Servold SA. Growth factor impact on wound healing. Clin Podiatr Med Surg 1991; 8: 937-953 [PMID: 1933739]
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1235059/
48. Baum CL, Arpey CJ. Normal cutaneous wound healing: clinical correlation with cellular and molecular events. Dermatol Surg 2005; 31: 674-686; discussion 686 [PMID: 15996419 DOI: 10.1097/0004 2728-200506000-00011]
http://www.ncbi.nlm.nih.gov/pubmed/15996419
49. Kim J, Hematti P. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 2009; 37: 1445-1453 [PMID: 19772890 DOI: 10.1016/ j.exphem.2009.09.004]
http://www.ncbi.nlm.nih.gov/pubmed/19772890
50. Mauney J, Olsen BR, Volloch V. Matrix remodeling as stem cell recruitment event: a novel in vitro model for homing of human bone marrow stromal cells to the site of injury shows crucial role of extracellular collagen matrix. Matrix Biol 2010; 29: 657-663 [PMID: 20828613 DOI: 10.1016/j.matbio.2010.08.008]
http://www.ncbi.nlm.nih.gov/pubmed/20828613
51. Arany PR, Cho A, Hunt TD, Sidhu G, Shin K, Hahm E, Huang GX, Weaver J, Chen AC, Padwa BL, Hamblin MR, Barcellos-Hoff MH, Kulkarni AB, J Mooney D. Photoactivation of endogenous latent transforming growth factor-β1 directs dental stem cell differentiation for regeneration. Sci Transl Med 2014; 6: 238ra69 [PMID: 24871130 DOI: 10.1126/scitranslmed.3008234]
http://www.ncbi.nlm.nih.gov/pubmed/24871130
52. Greenhalgh DG. The role of apoptosis in wound healing. Int J Biochem Cell Biol 1998; 30: 1019-1030 [PMID: 9785465 DOI: 10.1016/S1357-2725(98)00058-2]
http://www.ncbi.nlm.nih.gov/pubmed/9785465
53. Maguire G, Friedman P, McCarthy D, Friedman R, Maniotis A. Stem cell released molecules and exosomes in tissue engineering. Procedia Engineering 2013; 59: 270-278 [DOI: 10.1016/ j.proeng.2013.05.121]
http://www.sciencedirect.com/science/article/pii/S1877705813010357
54. Bissell MJ, Hines WC. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 2011; 17: 320-329 [PMID: 21383745 DOI: 10.1038/nm.2328]
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3569482/
55. Ehninger A, Trumpp A. The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med 2011; 208: 421-428 [PMID: 21402747 DOI: 10.1084/ jem.20110132
http://jem.rupress.org/content/208/3/421
56. Echeverri K, Tanaka EM. Mechanisms of muscle dedifferentiation during regeneration. Semin Cell Dev Biol 2002; 13: 353-360 [PMID: 12324217 DOI: 10.1016/S1084952102000915]
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4324932/
57. Grafi G, Barak S. Stress induces cell dedifferentiation in plants. Biochim Biophys Acta 2015; 1849: 378-384 [PMID: 25086338 DOI: 10.1016/j.bbagrm.2014.07.015]
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731517/
58. Chen X, Mao Z, Liu S, Liu H, Wang X, Wu H, Wu Y, Zhao T, Fan W, Li Y, Yew DT, Kindler PM, Li L, He Q, Qian L, Wang X, Fan M. Dedifferentiation of adult human myoblasts induced by ciliary neurotrophic factor in vitro. Mol Biol Cell 2005; 16: 3140-3151 [PMID: 15843428 DOI: 10.1091/mbc.E05-03-0218]
http://www.ncbi.nlm.nih.gov/pubmed/15843428
59. Mammoto T, Mammoto A, Ingber DE. Mechanobiology and developmental control. Annu Rev Cell Dev Biol 2013; 29: 27-61 [PMID: 24099083 DOI: 10.1146/annurev-cellbio-101512-122340]
http://www.ncbi.nlm.nih.gov/pubmed/24099083
60. Liu M, Liu N, Zang R, Li Y, Yang ST. Engineering stem cell niches in bioreactors. World J Stem Cells 2013; 5: 124-135 [PMID: 24179601 DOI: 10.4252/wjsc.v5.i4.124]
http://www.ncbi.nlm.nih.gov/pubmed/24179601
61. Rouabhia M, Park H, Meng S, Derbali H, Zhang Z. Electrical stimulation promotes wound healing by enhancing dermal fibroblast activity and promoting myofibroblast transdifferentiation. PLoS One 2013; 8: e71660 [PMID: 23990967 DOI: 10.1371/journal. pone.0071660]
http://www.ncbi.nlm.nih.gov/pubmed/23990967
62. Park JG, Lee DH, Moon YS, Kim KH. Reversine increases the plasticity of lineage-committed preadipocytes to osteogenesis by inhibiting adipogenesis through induction of TGF-β pathway in vitro. Biochem Biophys Res Commun 2014; 446: 30-36 [PMID: 24548409 DOI: 10.1016/j.bbrc.2014.02.036]
http://www.ncbi.nlm.nih.gov/pubmed/24548409
63. Maniotis AJ, Chen CS, Ingber DE. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA 1997; 94: 849-854 [PMID: 9023345 DOI: 10.1073/pnas.94.3.849]
http://www.ncbi.nlm.nih.gov/pubmed/9023345
64. Downing TL, Soto J, Morez C, Houssin T, Fritz A, Yuan F, Chu J, Patel S, Schaffer DV, Li S. Biophysical regulation of epigenetic state and cell reprogramming. Nat Mater 2013; 12: 1154-1162 [PMID: 24141451 DOI: 10.1038/nmat3777]
http://www.ncbi.nlm.nih.gov/pubmed/24141451
65. Bernardino L, Eiriz MF, Santos T, Xapelli S, Grade S, Rosa AI, Cortes L, Ferreira R, Bragança J, Agasse F, Ferreira L, Malva JO. Histamine stimulates neurogenesis in the rodent subventricular zone. Stem Cells 2012; 30: 773-784 [PMID: 22893458 DOI: 10.1002/ stem.1042]
http://www.ncbi.nlm.nih.gov/pubmed/22893458
66. Panula P, Sundvik M, Karlstedt K. Developmental roles of brain histamine. Trends Neurosci 2014; 37: 159-168 [PMID: 24486025 DOI: 10.1016/j.tins.2014.01.001]
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4058902/
67. Tran TD, Zolochevska O, Figueiredo ML, Wang H, Yang LJ, Gimble JM, Yao S, Cheng H. Histamine-induced Ca²⁺ signalling is mediated by TRPM4 channels in human adipose-derived stem cells. Biochem J 2014; 463: 123-134 [PMID: 25001294 DOI: 10.1042/ BJ20140065]
http://www.ncbi.nlm.nih.gov/pubmed/25001294
68. Biosse-Duplan M, Baroukh B, Dy M, de Vernejoul MC, Saffar JL. Histamine promotes osteoclastogenesis through the differential expression of histamine receptors on osteoclasts and osteoblasts. Am J Pathol 2009; 174: 1426-1434 [PMID: 19264900 DOI: 10.2353/ ajpath.2009.080871]
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2671373/
69. Mu X, Peng H, Pan H, Huard J, Li Y. Study of muscle cell dedifferentiation after skeletal muscle injury of mice with a CreLox system. PLoS One 2011; 6: e16699 [PMID: 21304901 DOI: 10.1371/journal.pone.0016699]
http://www.ncbi.nlm.nih.gov/pubmed/21304901
70. Téllez N, Montanya E. Gastrin induces ductal cell dedifferentiation and β-cell neogenesis after 90% pancreatectomy. J Endocrinol 2014; 223: 67-78 [PMID: 25122000 DOI: 10.1530/JOE-14-0222]
http://www.ncbi.nlm.nih.gov/pubmed/25122000
71. Xiong XR, Lan DL, Li J, Zi XD, Ma L, Wang Y. Cellular extract facilitates nuclear reprogramming by altering DNA methylation and pluripotency gene expression. Cell Reprogram 2014; 16: 215-222 [PMID: 24738992 DOI: 10.1089/cell.2013.0078]
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4444614/
72. Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber PJ, Epstein JA, Morrisey EE. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 2011; 8: 376-388 [PMID: 21474102 DOI: 10.1016/j.stem.2011.03.001]
http://www.ncbi.nlm.nih.gov/pubmed/21474102
73. Shoshani O, Ravid O, Massalha H, Aharonov A, Ovadya Y, Pevsner-Fischer M, Leshkowitz D, Zipori D. Cell isolation induces fate changes of bone marrow mesenchymal cells leading to loss or alternatively to acquisition of new differentiation potentials. Stem Cells 2014; 32: 2008-2020 [PMID: 24715711 DOI: 10.1002/stem.1719]
http://www.ncbi.nlm.nih.gov/pubmed/24715711
74. Nichols J, Smith A. Naive and primed pluripotent states. Cell Stem Cell 2009; 4: 487-492 [PMID: 19497275 DOI: 10.1016/ j.stem.2009.05.015]
http://www.ncbi.nlm.nih.gov/pubmed/19497275
75. Mathieu J, Zhang Z, Nelson A, Lamba DA, Reh TA, Ware C, Ruohola-Baker H. Hypoxia induces re-entry of committed cells into pluripotency. Stem Cells 2013; 31: 1737-1748 [PMID: 23765801 DOI: 10.1002/stem.1446]
http://www.ncbi.nlm.nih.gov/pubmed/23765801
76. Booth BW, Boulanger CA, Anderson LH, Smith GH. The normal mammary microenvironment suppresses the tumorigenic phenotype of mouse mammary tumor virus-neu-transformed mammary tumor cells. Oncogene 2011; 30: 679-689 [PMID: 20890308 DOI: 10.1038/onc.2010.439]
http://www.ncbi.nlm.nih.gov/pubmed/20890308
77. Comes S, Gagliardi M, Laprano N, Fico A, Cimmino A, Palamidessi A, De Cesare D, De Falco S, Angelini C, Scita G, Patriarca EJ, Matarazzo MR, Minchiotti G. L-Proline induces a mesenchymal-like invasive program in embryonic stem cells by remodeling H3K9 and H3K36 methylation. Stem Cell Reports 2013; 1: 307-321 [PMID: 24319666 DOI: 10.1016/j.stemcr.2013.09.001]
http://www.ncbi.nlm.nih.gov/pubmed/24319666
78. Merolla PA, Arthur JV, Alvarez-Icaza R, Cassidy AS, Sawada J, Akopyan F, Jackson BL, Imam N, Guo C, Nakamura Y, Brezzo B, Vo I, Esser SK, Appuswamy R, Taba B, Amir A, Flickner MD, Risk WP, Manohar R, Modha DS. Artificial brains. A million spikingneuron integrated circuit with a scalable communication network and interface. Science 2014; 345: 668-673 [PMID: 25104385 DOI: 10.1126/science.1254642]